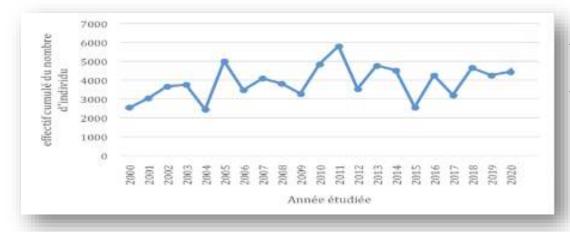
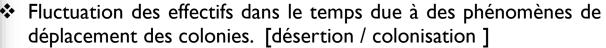


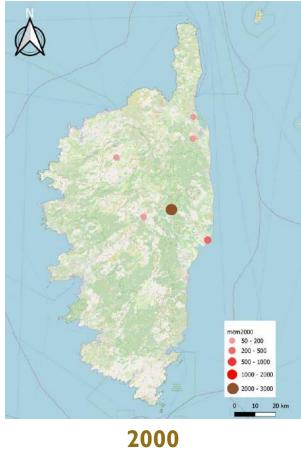
Etude des terrains de chasse du Murin à oreilles échancrées sur le deuxième plus grand fleuve de Corse : le Tavignanu

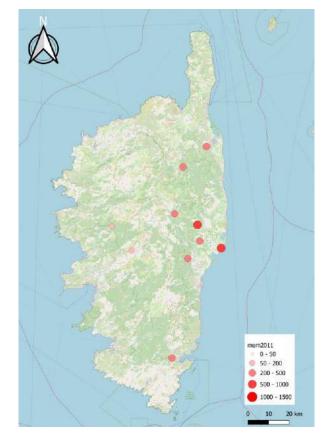
LE MURIN À OREILLES ÉCHANCRÉES EN CORSE

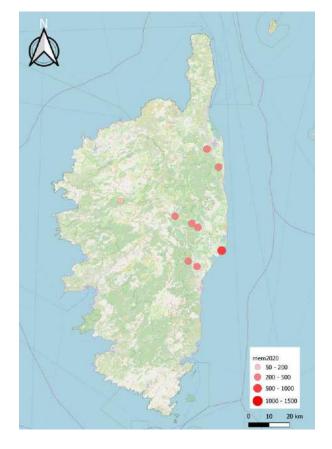

Bâtiment abandonné (cave viticole, hangar, station de pompage, ruine, ancien moulin...)


Verger, boisement, stabulation (littérature du continent)

Quasi-menacée (NT) sur la liste rouge régionale (2010), espèce assez commune en Corse

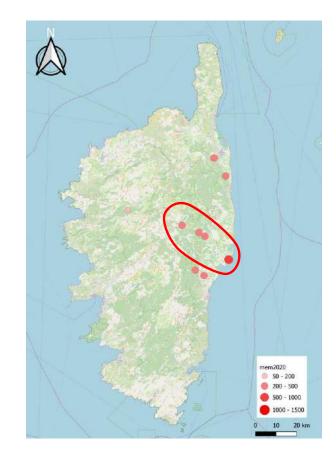





LE MURIN À OREILLES ÉCHANCRÉES EN CORSE

Distribution des colonies de reproduction entre 2000 et 2020

2011



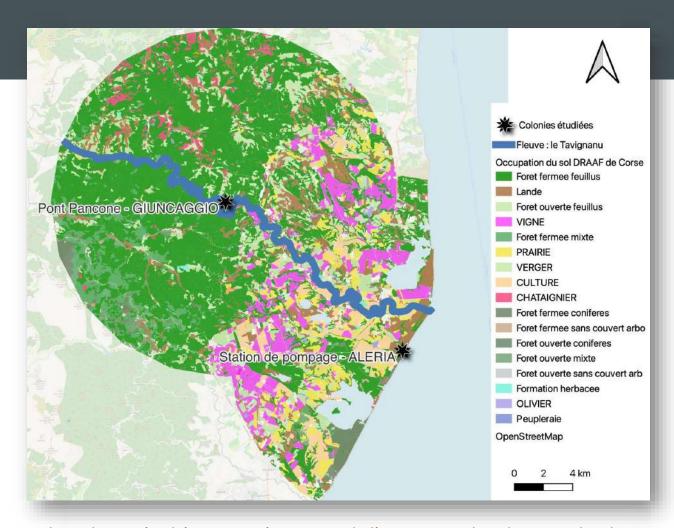
2020

LE MURIN À OREILLES ÉCHANCRÉES EN CORSE

2021/2022

Quels sont les territoires de chasse du Murin à oreilles échancrées le long du Tavignanu en Corse ?

LES SITES D'ÉTUDE

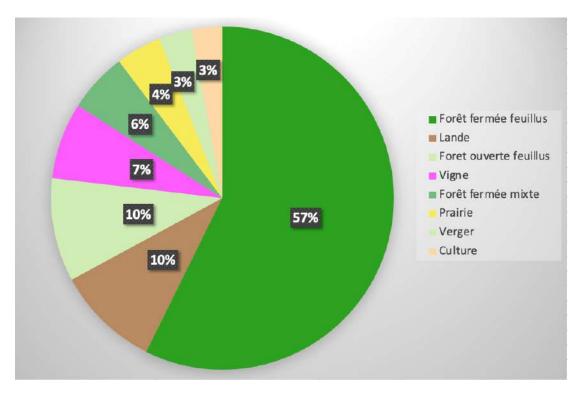

Situés à 21 km l'un de l'autre

Contexte paysager différent

Plaine orientale

Moyenne montagne

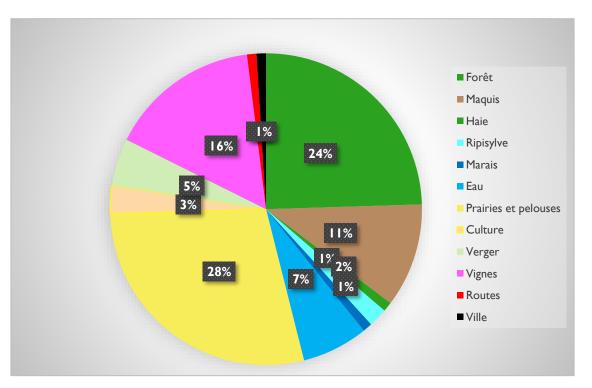
Chevauchement des domaines vitaux potentiels de chasse


<u>Localisation des colonies étudiées et représentation de l'occupation du sol au sein des domaines de dispersion (12 km)</u>

LES SITES D'ÉTUDE

- Colonie du pont de Pancone (moyenne montagne)
- Les effectifs se concentrent autour de 1000 individus depuis 2012
- Située sur le site Natura 2000 « Basse vallée du Tavignanu ».

Répartition en pourcentage des habitats autour de la colonie (12 km de rayon)


LES SITES D'ÉTUDE

* Colonie de la station de pompage (plaine) :

- Connue depuis 1986, et depuis 2003 les effectifs se concentrent autour de 1000 individus.
- Située sur en bord littoral et en limite de la zone Natura 2000 « Marais del Sale ».

Répartition en pourcentage des habitats autour de la colonie (12 km de rayon)

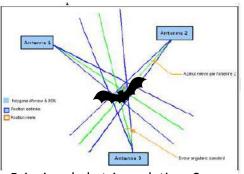
MATÉRIEL ET MÉTHODE

UTILISATION DE LA MÉTHODE PAR RADIOPISTAGE

Equipement

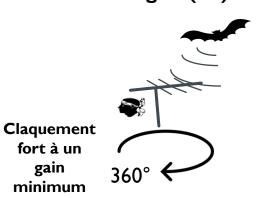
stimation des localisations

10 femelles équipées / étude
 Session I (2021) : pose d'émetteur par colle chirurgicale
 Session 2 (2021), Session I & 2 (2022) : pose d'émetteur collier


Sessions de terrain

- Période de gestation (S1) entre le 29/05 et le 04/06
- Période de lactation (S2) entre le 10/07 et le 18/07

Equipes

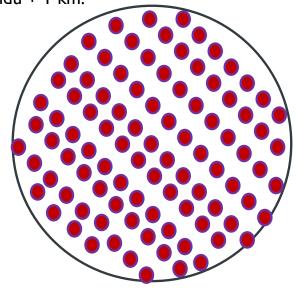

5 à 10 personnes tout le long de l'étude comprenant plus de 3 salariés ou bénévoles actifs du GCC.

Triangulation

Principe de la triangulation. Source: Néma, 2007

Homing in (HI)

MATÉRIEL ET MÉTHODE


ETUDE DE LA SÉLECTION DES SITES DE CHASSE

- Colonie du Pont de Pancone (moyenne montagne)
- Caractérisation site de chasse + évaluation de la stratification (METHODE BARATAUD)

MATÉRIEL ET MÉTHODE

ÉTUDE DE LA SÉLECTION DES SITES DE CHASSE

- Colonie du Pont de Pancone (moyenne montagne)
- Caractérisation site de chasse + évaluation de la stratification (METHODE BARATAUD)
- Colonie de la station de Pompage (plaine)
- Caractérisation site de chasse + évaluation de la stratification (METHODE BARATAUD)
- Réalisation d'un modèle de sélection de ressource (GLMM) :
- Création d'une carte d'occupation du sol en format raster (utilisation des distances)
- Matérialisation de la zone de ressource disponible par une zone tampon correspondant à la distance parcourue maximale observée pour un individu + 1 km.

Le nombre de points disponibles est proportionnel au nombre de localisation observée par individu par un facteur de 100.

Ex : Individu I = 43 localisations utilisées = 4300 localisations disponibles

Utilisation territoire (0/1) ~ distance au gîte + distance au type d'habitat + (1|id)

• : Utilisation (code = I)

: Disponible (code = 0)

ÉTUDE TÉLÉMÉTRIQUE: TEMPS DE SUIVI PAR INDIVIDU

Colonie du pont de Pancone (moyenne montagne)

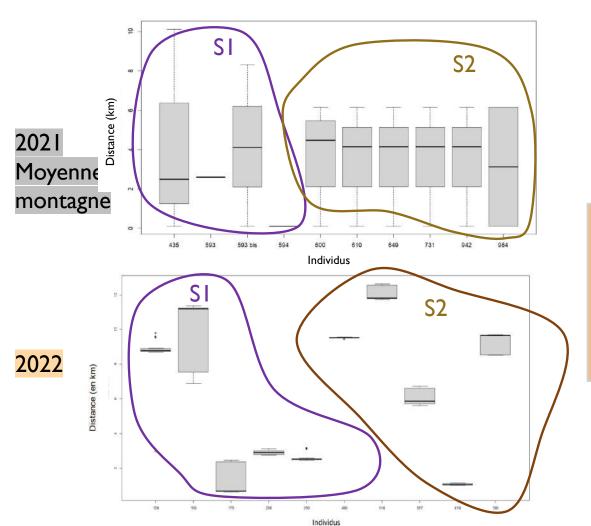
SI (gestation)

Mauvaise représentation du comportement de chasse en Session I

S2 (lactation)

Bonne représentation du comportement de chasse en Session 2 10 % des individus en Homing in au moins une fois

Colonie de la station de pompage (plaine)


SI (gestation)

S2 (lactation)

Bonne représentation du comportement de chasse en Session I &2

100 % des individus en Homing in au moins une fois

DISTANCES PARCOURUES

SI

Distance moyenne: 3,38

Distance max: 10,13

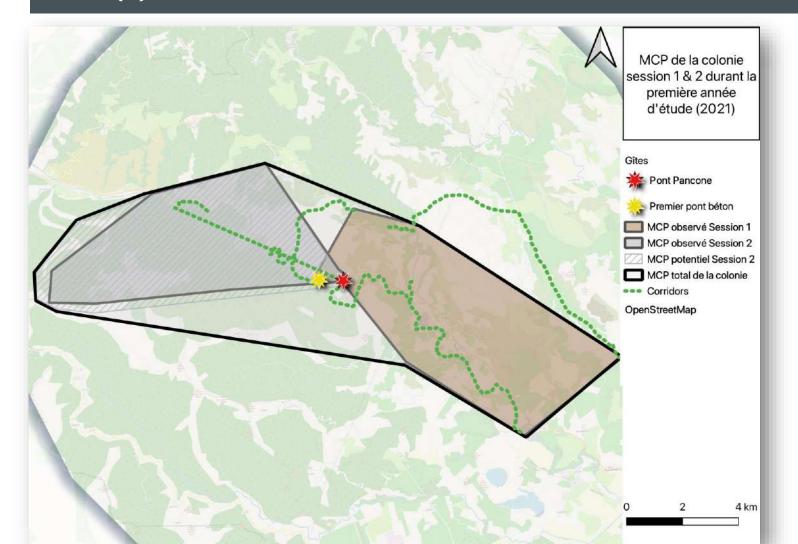
Distance moyenne: 4,11

Distance max: 10

S2

Distance moyenne: 3,9

Distance max: 6,14

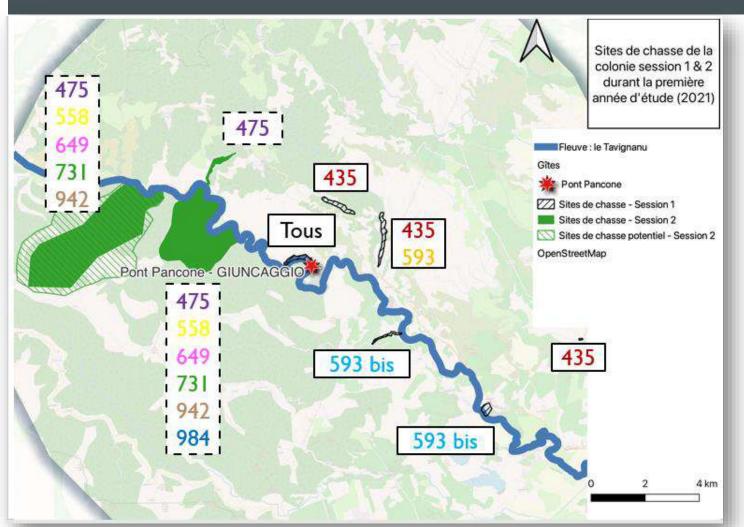

Distance moyenne: 5,6

Distance max: 12,6

- La zone la plus exploitée semble se contenir dans un rayon de 6 km autour des colonies.
- Capacité de vol similaire

COLONIE PONT PANCONE

MCP(S) ET CORRIDORS



- ❖ Surface du MCP colonie : 9733 ha
- Activité de chasse en session I plus en amont du fleuve vers la plaine
- Utilisation du fleuve comme corridor
- Déplacement d'individus vers un gîte annexe en période de gestation

COLONIE PONT PANCONE

RÉSULTAT

SITES DE CHASSE IDENTIFIÉS PAR INDIVIDU

80 % des sites de chasse estimés par la méthode de triangulation

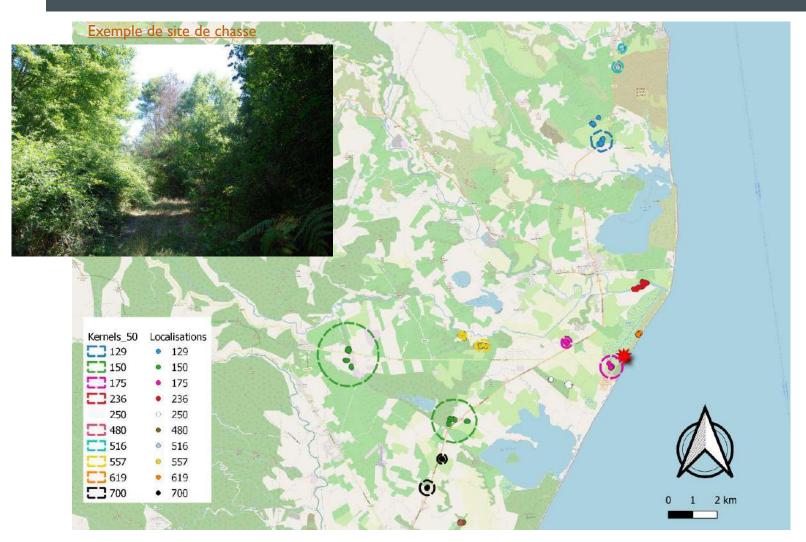
- Nombre de sites de chasse en session 1: 6
- Nombre de sites de chasse en session 2 : 4
- Nombre maximum de sites de chasse fréquentés par un individu : 4
- Nombre moyen de sites de chasse/ individus :
 - \Leftrightarrow Session I:2,25/individu (max = 4, min = I I)
 - \Leftrightarrow Session 2:3/individu (max = 3, min = 2)
- ❖ Les surfaces varient de 0,05 à 1723 ha.

Comportement en session 2

Routinière, fidèle

COLONIE STATION POMPAGE

MCP(S) ET CORRIDORS



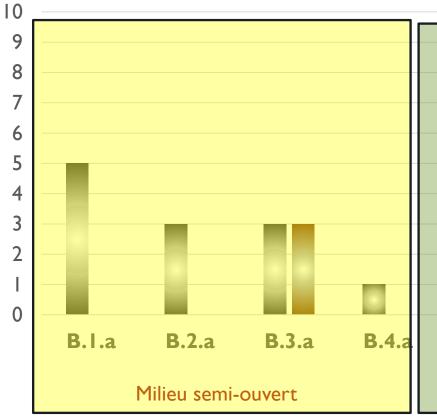
- ❖ Surface MCP colonie : 13100 Ha
- Evitement des zones d'eau lors des déplacements
- Déplacements homogènes autour de la colonie
- Déplacement d'un individu vers un gîte annexe en période de gestation

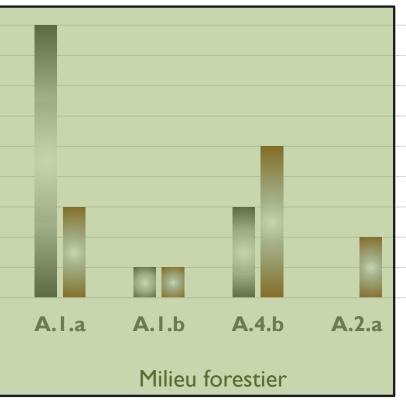
COLONIE STATION POMPAGE

RÉSULTAT

SITES DE CHASSES IDENTIFIÉS PAR INDIVIDU

100 % des sites de chasse estimés en HI


- Nombre de sites de chasse en session 1: 17
- Nombre de sites de chasse en session 2 : 13
- Nombre moyen de sites de chasse/ individu :
- 2,6/individu (max = 5, min = 1)
- Surface site de chasse théorique :
- De 0,25 à 751 ha/ individu
- Surface site de chasse observé :
- De 0,21 à 3,9 ha/ individu


Comportement:

Beaucoup d'aller-retour sur sites de chasse Routinière

CARACTÉRISATION DES SITES DE CHASSE

☐:S1 ☐:S2

Utilisation de milieux semi-ouverts presque exclusivement en SI

❖ Type d'habitats dominants :

A. I.a: Bois de feuillus, présence d'un point d'eau ou d'une rivière

A.4.b: Maquis arboré dense

B.1.a: Prairies de pâture ou mixtes avec lisière arborée ou haies

B.3.a: Culture, vignes avec lisière arborée ou haies

CARACTÉRISATION DES SITES DE CHASSE : STRUCTURE VERTICALE

Stratification

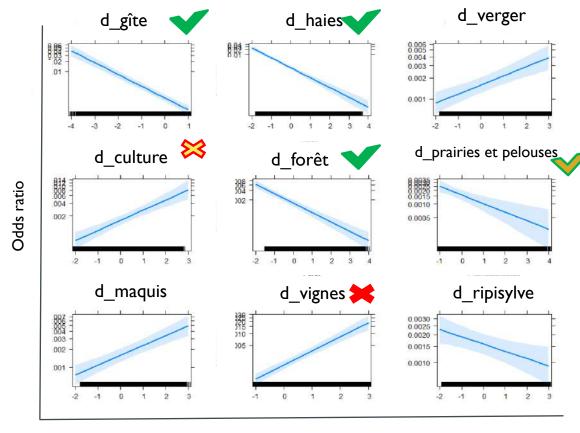
Session et année étudiée	Nombre de strates d'habitats dominants	Strates	Nb	%
	Présence de 3 strates	A-a-h	7	77
Année 2021	Présence de 2 strates	A -a	2	23
	Présence de 3 strates	A-a-h	23	77
	Présence de 2	A -a	2	7
	strates	A -h	4	13
	Présence de I			
Année 2022	strate	A	1	3

Nombre de strates d'habitats par site de chasse

- 100 % des sites de chasse ont une couverture arborée (A) pour les deux colonies
- 77 % des sites de chasse sont représentés par la structure de type A-a-h en 2021 et en 2022

Importance d'une structure arborée complexe type A-a-h dans la sélection de site de chasse.

COLONIE STATION POMPAGE


RÉSULTAT

MODÉLISATION DE LA SELECTION DE RESSOURCE

Session I

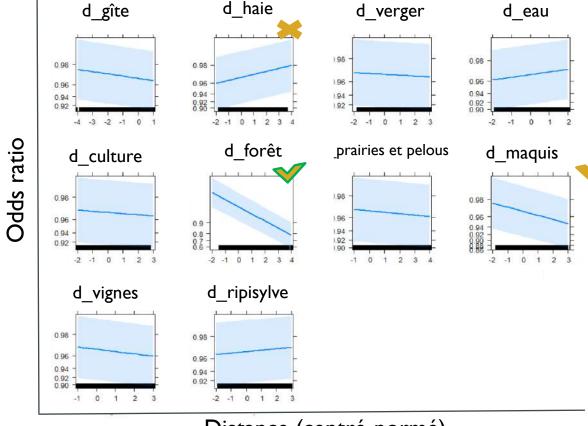
Utilisation territoire ~ distance au gîte + distance aux haies + distance aux vergers + distance aux cultures + distance aux forêts + distance aux prairies et pelouses + distance aux maquis + distance aux vignes + (1|id)

	Estimate v log(O				
	Variables	Variables			
Variables	sélectionnées	évitées	std.error	z value	Pr(> z)
Intercept	-1,27		0,53	6,445	***
d_gîte	-2,27		0,005	-16,674	***
d_haies	-4,06		0,014	8,604	***
d_verger		1,35	0,008		***
d_culture		1,73	0,007	10,419	***
d_forêt	-2,3		0,04	-13,115	***
d_ prairies et					
pelouses	<mark>-1,55</mark>		0,015	-3,075	**
d_maquis		1,46	0,015	-11,370	***
d_vignes		<mark>2,27</mark>	0,008	-8,792	***
d_ripisylve	-1,20		0,007	6,536	***

Distance (centré-normé)

Sélection des milieux semi-ouverts, effet lisière

COLONIE STATION POMPAGE


RÉSULTAT

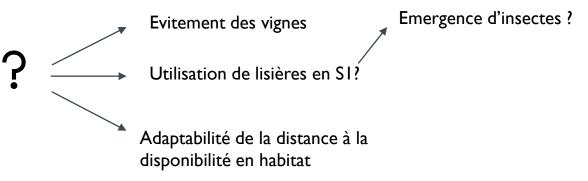
MODÉLISATION DE LA SELECTION DE RESSOURCE

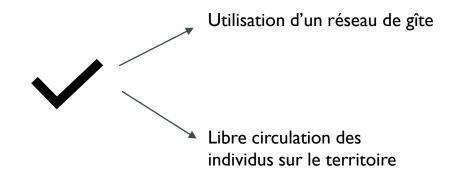
Session 2

Utilisation territoire ~ distance au gîte + distance aux haies + distance aux vergers + distance aux cultures + distance à l'eau + distance aux forêts + distance aux prairies et pelouses + distance au maquis + distance aux vignes + (1|id)

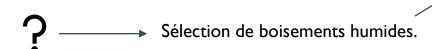
	Estimate valeurs log(OR)				
	Variables				
	sélectionn	Variables	std.err		Pr(> z
Variables	ées	évitées	or	z value)
Intercept	3,40		0,53	6,445	***
	-				
d_gîte	1,08		0,005	-16,674	***
d_haies		1,12	0,014	8,604	***
d_verger	-1,03	1.03	0,008	-3,631	***
D_culture	-1,04		0,007	10,419	***
d_eau		1,09	0.009	-5,225	***
d_forêt	<mark>-1,69</mark>		0,04	-13,115	***
d_prairies					
et pelouses	-1,05		0,015	-3,075	**
d_maquis	<mark>-1,19</mark>		0,015	-11,370	***
d_vignes	-1,08		0,008	-8,792	***
d_ripisylve		1,05	0,007	6,536	***

Distance (centré-normé)

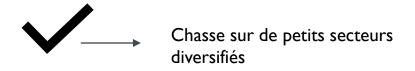

Sélection des milieux forestier fermés ?


DISCUSSION

boisée arborée complexe


UTILISATION DU TERRITOIRE ET SÉLECTION SITES DE CHASSE

Utilisation du territoire


Habitats

______ Utilisation de structure

Recherche de points d'eau ? (Seidman & Zabel, 2001)

Comportement de l'espèce :

DISCUSSION

CONCLUSION/PERSPECTIVES

Réalisation d'une étude en 2024 sur le comportement de chasse d'une colonie située en haute altitude ?

MERCI POUR VOTRE ÉCOUTE!

BIBLIOGRAPHIE

Barrataud - Protocoles d'étude des habitats de chasse potentiels autour des colonies de mise-bas des chiroptères de l'annexe II de la Directive Habitats, SFEPM.

Blake, R. J., Woodcock, B. A., Westbury, D. B., Sutton, P., & Potts, S. G. (2012). Novel management to enhance spider biodiversity in existing grass buffer strips. Agricultural and Forest Entomology, 15(1): pp 77–85.

Danchin E. & Wagner R.H., (1997). – The evolution of coloniality: the emergence of new perspectives. Trends in Ecology & Evolution, 12 (9): pp 342-347.

Dietz M., Pir J.B. & Hillen J., (2013) – Does the survival of greater horseshoe bats and Geoffroy's bats in Western Europe depend on traditional cultural landscapes? Biodiversity and conservation, 22 (13-14): pp 3007-3025.

Fenton M.B., (1997). Science and the conservation of bats. Journal of Mammalogy, 78: pp 1-14

Flaquer C., Puig-Montserrat X., Burgas A. & Russo D.,(2008). Habitat selection by Geoffroy's bats (Myotis emarginatus) in a rural Mediterranean landscape: implications for conservation. Acta Chiropterologica, 10 (1): pp 61-67.

Krull, D., Schumm, A., Metzener, W., & Neuweiler, G. (1991). Foraging areas and foraging behavior in the notch-eared bat, M.emarginatus. Behav. Ecol. Sociobiol, 28: pp 247-253

Lewis S., Sherratt T.N., Hamer K.C. & Wanless S. (2001). Evidence of intra-specific competition for food in a pelagic seabird. Nature, 412 (6849): pp 816-819.

Manly B.F.J., McDonald L.L., Thomas, D.L., McDonald, T.L. & Erickson W.P., (2002). – Resource Selection by Animals: Statistical Analysis and Design for Field Studies, 2nd ed. Boston, Kluwer, 219 p

Matutinie F., Fonderflick J., Cosson E., Quekenborn D., Bersnard A., (2018) - Chiroptères et sélection des terrains de chasse : l'importance des variations individuelles pour la définition de mesures de conservation pertinentes. Symbiose n°37.pp 37-56.

BIBLIOGRAPHIE

Norberg U. & Rayner J. (1987). Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philososphical Transaction of the Royal Society B 316, pp. 335-427.

Seidman, V. M., & Zabel, C. J. (2001). Bat activity along intermittent streams in northwestern california. Journal of Mammalogy, 82(3), 738.

VALIDATION DES MODÈLES

Model Session 1:

Low Correlation

```
Term VIF VIF 95% CI Increased SE Tolerance Tolerance 95% CI
       D_colony 1.46 [1.44, 1.48]
                                          1.21
                                                     0.68
                                                              [0.67, 0.69]
          haies 1.54 [1.52, 1.56]
                                          1.24
                                                     0.65
                                                              [0.64, 0.66]
                                          1.14
                                                     0.77
         verger 1.29 [1.28, 1.31]
                                                              [0.76, 0.78]
                                          1.28
        Culture 1.63 [1.61, 1.65]
                                                    0.61
                                                              [0.61, 0.62]
                                          1.12
                                                              [0.79, 0.81]
          Foret 1.25 [1.24, 1.27]
                                                    0.80
                                          1.19
Prairiespelouses 1.42 [1.40, 1.44]
                                                    0.71
                                                              [0.70, 0.71]
                                          1.18
         Maguis 1.40 [1.39, 1.42]
                                                     0.71
                                                              [0.70, 0.72]
                                          1.30
         Vignes 1.70 [1.68, 1.72]
                                                     0.59
                                                              [0.58, 0.60]
            rip 1.32 [1.31, 1.34]
                                          1.15
                                                     0.76
                                                              [0.75, 0.76]
```

> check_overdispersion(mod_s1_full_mix)
Overdispersion test

```
dispersion ratio = 0.928
Pearson's Chi-Squared = 36226.826
p-value = 1
```

No overdispersion detected.

Model Session 2:

Low Correlation

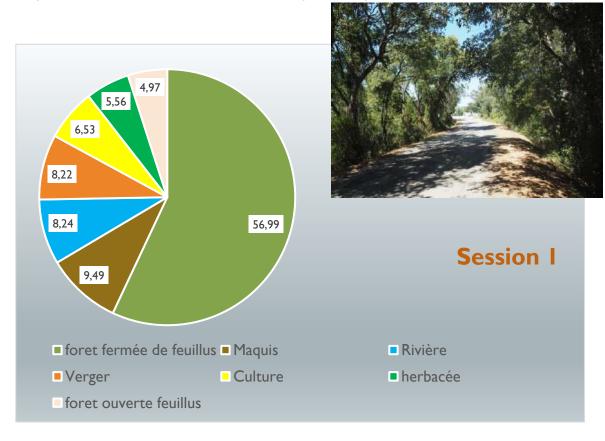
```
Term VIF VIF 95% CI Increased SE Tolerance Tolerance 95% CI
       D_colony 3.23 [3.16, 3.29]
                                          1.80
                                                    0.31
                                                             [0.30, 0.32]
          haies 2.26 [2.22, 2.30]
                                          1.50
                                                             [0.43, 0.45]
                                          1.28
         verger 1.65 [1.62, 1.68]
                                                    0.61
                                                             [0.60, 0.62]
             eau 2.72 [2.67, 2.78]
                                          1.65
                                                    0.37
                                                             [0.36, 0.37]
        Culture 1.38 [1.36, 1.41]
                                          1.18
                                                    0.72
                                                             [0.71, 0.73]
          Foret 1.08 [1.07, 1.10]
                                          1.04
                                                    0.92
                                                             [0.91, 0.94]
Prairiespelouses 1.33 [1.32, 1.36]
                                          1.16
                                                    0.75
                                                             [0.74, 0.76]
                                          1.03
                                                             [0.93. 0.95]
         Maguis 1.06 [1.05, 1.08]
                                                    0.94
         Vignes 1.69 [1.67, 1.72]
                                          1.30
                                                    0.59
                                                             [0.58, 0.60]
            rip 1.32 [1.30, 1.34]
                                          1.15
                                                    0.76
                                                             [0.75, 0.77]
```

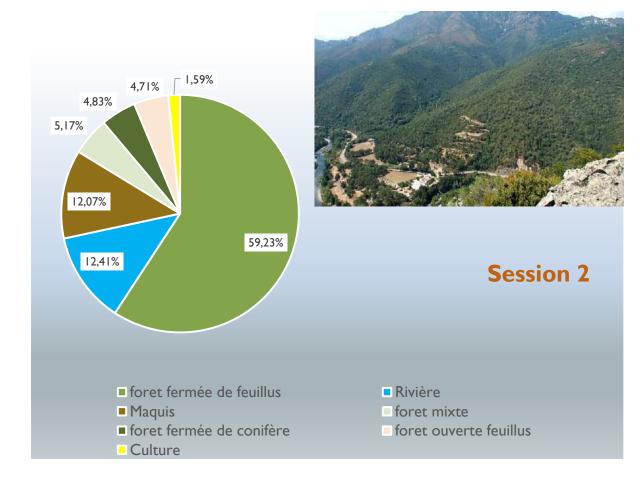
> check_overdispersion(mod_s2_full_mix)
Overdispersion test

```
dispersion ratio = 0.550
Pearson's Chi-Squared = 14974.589
p-value = 1
```

No overdispersion detected.

EXEMPLES DE SITES DE CHASSES




COLONIE PONT PANCONE

RÉSULTAT

DESCRIPTION DES SITES DE CHASSE

Représentativité de la selection de l'habitat pour chaque session d'étude (année 2021)

COMPORTEMENT DE CHASSE

Session	Individus	Distance parcourut en km	Site de chasse
SI	435	0	antisanti
SI	435	2,6	corsigliese
SI	435	10,13	tallone
SI	435	2,4	ruisseau de ciocciu
SI	593	2,6	corsigliese
SI	593 bis	0	antisanti
SI	593 bis	4,11	Ruisseau Cantinche
SI	660	0	antisanti
S2	475	4,14	Motocross
S2	475	4,8	suarte
S2	475	6,14	Malasarto-casatora
S2	475	0	antisanti
S2	558	4,14	motocross
S2	558	6,14	Malasarto-casatora
S2	558	0	antisanti
S2	649	4,14	motocross
S2	649	0	antisanti
S2	649	6,14	Malasarto-casatora
S2	731	4,14	Motocross
S2	731	0	antisanti
S2	731	6,14	Malasarto-casatora
S2	942	4,14	Motocross
S2	942	0	antisanti
S2	942	6,14	Malasarto-casatora
S2	984	6,14	Malasarto-casatora
S2	984	0	antisanti
SI	593 bis	8,3	Rottani

		Heure de sortie	Heure de retour	Temps d'a:ctivité
Session I 2021	Moyenne	21:2	5:29	8:05
	Ecart-type	0:04	0:01	0:004
Session 2	Moyenne	21:44	5:03	7:18
2021	Ecart-type	0:12	0:17	0:30